Examples and Use Cases for DataAnalysisToolkit¶
Introduction¶
This document provides examples and use cases illustrating how the DataAnalysisToolkit can be employed in various data analysis scenarios. Each example includes code snippets and explanations to demonstrate the toolkit’s functionality.
Use Case 1: Basic Data Analysis¶
Scenario¶
Performing basic statistical analysis on a dataset of sales data.
Example Code¶
from data_analysis_toolkit import DataAnalysisToolkit
# Load data
analyzer = DataAnalysisToolkit('sales_data.csv')
# Basic statistics
statistics = analyzer.calculate_budget_statistics('revenue')
print(statistics)
# Detecting outliers
outliers = analyzer.detect_outliers('revenue')
print(outliers)
Description¶
This example demonstrates loading a CSV file and performing basic statistical analysis, including outlier detection.
Use Case 2: Data Cleaning and Preprocessing¶
Scenario¶
Preparing a dataset for machine learning, including handling missing values and encoding categorical variables.
Example Code¶
# Handle missing values
analyzer.handle_missing_values('age', strategy='mean')
# Encode categorical features
analyzer.encode_categorical_features()
# Export cleaned data
analyzer.export_data('cleaned_data.csv')
Description¶
This example shows how to clean and preprocess data by handling missing values and encoding categorical features.
Use Case 3: Data Visualization¶
Scenario¶
Visualizing the distribution and relationship between variables in a dataset.
Example Code¶
# Histogram
analyzer.visualizer.histogram('price')
# Scatter plot
analyzer.visualizer.scatterplot('price', 'quantity')
Description¶
Visualizations such as histograms and scatter plots help understand data distributions and relationships.
Use Case 4: Advanced Analysis - Feature Engineering¶
Scenario¶
Creating new features from existing data to improve model performance.
Example Code¶
# Binning a continuous variable
analyzer.feature_engineer.binning('age', bins=[0, 18, 35, 65, 100], labels=['Youth', 'Young Adult', 'Adult', 'Senior'])
# Interaction feature
analyzer.feature_engineer.create_interaction('price', 'quantity')
Description¶
Feature engineering is critical for uncovering insights and enhancing model accuracy.
Use Case 5: Generating Reports¶
Scenario¶
Creating comprehensive reports for data analysis projects.
Example Code¶
# Generate HTML report
analyzer.report_generator.generate_html_report('data_analysis_report.html')
Description¶
This showcases the report generation feature, useful for documentation and presentation purposes.
Conclusion¶
These examples represent a fraction of what can be achieved with the DataAnalysisToolkit. Users are encouraged to explore the toolkit’s capabilities and apply them to diverse data analysis scenarios.