Documentation for data_sources
Module of DataAnalysisToolkit¶
The data_sources
module of DataAnalysisToolkit provides a suite of connectors for importing data from various sources like APIs, Excel files, and SQL databases. Each connector is designed to simplify the process of fetching and loading data into a format suitable for analysis in Python.
API Connector (api_connector.py
)¶
Overview¶
The APIConnector
class allows you to easily fetch data from web APIs. It handles the complexities of making HTTP requests and processing responses.
Usage¶
connector = APIConnector('https://api.example.com', auth=('username', 'password'))
response = connector.get('endpoint', params={'key': 'value'})
print(response.json())
Methods¶
__init__(self, base_url, auth=None)
: Initialize the connector with API base URL and optional authentication.get(self, endpoint, params=None)
: Perform a GET request to the specified endpoint.post(self, endpoint, data=None, json=None)
: Send a POST request with provided data.put(self, endpoint, data=None, json=None)
: Send a PUT request to update resources.delete(self, endpoint, params=None)
: Send a DELETE request to remove resources.patch(self, endpoint, data=None, json=None)
: Send a PATCH request for partial updates.
Excel Connector (excel_connector.py
)¶
Overview¶
The ExcelConnector
class provides functionality to read data from Excel files. It supports different sheets and custom formats.
Usage¶
connector = ExcelConnector('path/to/excel/file.xlsx')
data = connector.load_data(sheet_name='Sheet1')
Methods¶
__init__(self, file_path)
: Initialize the connector with the path to an Excel file.load_data(self, sheet_name=0, header=0)
: Load data from a specified sheet in the Excel file.load_all_sheets(self)
: Load all sheets from the Excel file into a dictionary of DataFrames.preview_sheet(self, sheet_name=0, num_rows=5)
: Preview a few rows from a specified sheet.
SQL Connector (sql_connector.py
)¶
Overview¶
The SQLConnector
class enables you to connect to SQL databases, execute queries, and retrieve results in a DataFrame format.
Usage¶
connector = SQLConnector('postgresql://user:password@localhost:5432/mydatabase')
data = connector.query_data('SELECT * FROM my_table')
Methods¶
__init__(self, db_uri)
: Initialize the connector with a database URI.query_data(self, query)
: Execute a SQL query and return the results.insert_data(self, df, table_name, if_exists='append')
: Insert data from a DataFrame into a SQL table.update_data(self, query)
: Execute a SQL query to update data in the database.
Each connector is designed to handle specific data source types, providing a consistent and efficient way to import data into your Python environment for further processing and analysis.